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When immersed in a non-uniform electrolyte solution, a rigid charged sphere migrates
toward higher or lower concentration of the electrolyte depending on the relative ionic
mobilities and the charge borne by the sphere. This motion has a twofold origin: first,
a macroscopic electrolyte gradient produces an electric field which acts on the charged
sphere (electrophoresis); secondly, the electrolyte gradient polarizes the cloud of
counterions surrounding the charged sphere by making the cloud thinner on the
high-concentration side (chemiphoresis). In this paper, we compute the terminal
velocity of a non-conductive sphere through a slightly non-uniform solution of a
symmetrically charged binary electrolyte. The analysis proceeds through an expan-
sion in the small parameter A (defined as the ratio of the counterion-cloud thickness
to the particle radius). Results to O(A) are presented. The only property of the sphere’s
surface that affects the velocity is its zeta potential { when the electrolyte gradient
vanishes; no information concerning the dependence of { upon ionic strength is
needed. While the chemiphoretic effect always directs the particle toward higher
electrolyte concentration, the electrophoretic contribution can move the particle in
either direction depending on the sign of ¢, where £ is a normalized difference in
mobilities between cation and anion of the elecytrolyte ; thus particle movement could
be directed toward either higher or lower electrolyte concentration depending on the
physical properties of the system. With slight algebraic rearrangement, our results
are also applicable to conventional electrophoresis (particle motion in an applied
electric field) and show excellent agreement with the numerical calculations of
O’Brien & White (1978).

1. Introduction

When placed in a solution that is macroscopically non-uniform in the concentration
of some molecular solute, a colloidal particle moves in response to forces generated
by interactions between its surface and the solute molecules. Derjaguin and coworkers
(Derjaguin, Dukhin & Korotkova 1961; Dukhin & Derjaguin 1974) introduced the
term ‘diffusiophoresis’ for this motion. In Part 1 of this series (Anderson, Lowell &
Prieve 1982) we derived an expression for the velocity of a rigid spherical particle
through a viscous fluid containing a macroscopic gradient in the concentration of a
non-electrolyte species, when the range of physical interactions between solute
molecules and the particle is very short compared with the particle radius. If the
interaction between solute molecules and the particle is attractive, the particle
migrates toward higher solute concentration, whereas the movement is toward lower
solute concentration if the interaction is repulsive.
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In this paper we consider a charged spherical particle in a viscous fluid that is
macroscopically non-uniform in the concentration of an electrolyte. The action of an
electrolyte gradient differs in several respects from that of a non-electrolyte. First,
dissolution of a simple salt in water, for example, produces two solute species instead
of one: a counterion which is attracted to the charged sphere and a coion which is
repelled by the sphere. Secondly, these two ions have different mobilities (diffusion
coefficients). In an electrically neutral solution of a symmetrically charged binary
electrolyte, equimolar gradients of the concentrations of the two species tend to give
rise to cocurrent but unequal diffusion fluxes, and therefore tend to create a ‘diffusion
current’ (Newman 1973). This tendency toward separation of charges is opposed by
a macroscopic electric field which arises spontaneously to produce an ‘electrical
current’, equal to the diffusion current but opposite in direction, so that no net
current accompanies the diffusion of the salt. Thus, in the simplest case of diffusio-
phoresis of a charged sphere caused by a gradient in the concentration of a simple
salt, there are two species present and a macroscopic electric field, which represent
three driving forces for the motion of the sphere.

Derjaguin ef al. (1961) calculated the migration velocity of a charged sphere in an
electrolyte gradient by intuitively extending their analysis for the osmotic flow
tangent to an infinite flat plate, generated by a non-electrolyte gradient. Apparently
they linearly superimposed the diffusiophoretic velocity, generated by each species
acting independently, with the electrophoretic velocity in a macroscopically uniform
electrolyte generated by an externally applied field of the same strength as that
induced by the salt gradient. Although this approach seems reasonable, few details
are given of how the final result was obtained, and no criteria are specified for its
validity (except for an infinitesimally thin double layer).

In this paper we seek a solution for the velocity of a charged, rigid, non-conductive
sphere spontaneously moving through a slightly non-uniform solution of a binary salt.
By ‘slightly nonuniform’ we mean that, in the absence of the sphere, the change in
salt concentration over a distance equal to the radius of the sphere is a small fraction
of the salt concentration at the location of the sphere’s centre. We confine our
attention to conditions for which the thickness of the counterion cloud (i.e. the Debye
screening length k1) is much smaller than the sphere’sradius a. The ion concentration,
electrostatic potential and velocity fields are expressed as regular power-series
expansions in the small parameter (xa)™!, denoted by A. Separate expansions are
obtained inside and outside the counterion cloud, which are then matched to yield
the particle velocity u through O(A).

In §2 we obtain u when the counterion cloud is differentially thin (A = 0). Profiles
inside the cloud are deduced by assuming it to be locally planar and by neglecting
any normal flux of ions or fluid. Thus the local fluid velocity immediately outside the
cloud is found to be parallel to the local salt gradient. Profiles outside the cloud are
obtained by assuming local electroneutrality and by using a boundary condition at
the sphere’s surface in which slip occurs at a velocity satisfying the inner solution.
The resulting velocity field outside the cloud corresponds to potential low. In the
case of a differentially thin cloud, we show that the particle velocity u is independent
of the shape as well as the size of the particle, provided that the local mean radius
of curvature is everywhere much larger than the Debye length 1.

In §3 the mathematical description of the phenomena is reformulated for a
spherical particle using a single set of equations, which is uniformly valid both inside
and outside the counterion cloud. The solution is obtained in the following form using
matched asymptotic expansions:

U= u,+Au; +0(A?). (1.1)
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Fieure 1. Coordinates for flow near an infinite flat plate. x™! is the Debye screening length. The
density of filled circles is meant to represent the concentration of counterions.

In general, u is shown to depend on three independent groups of physical properties:
(1) ¢, the zeta potential of the particle in a uniform electrolyte solution having the
same concentration that the non-uniform solution has at the point where the sphere
is immersed ; (2) g, the difference between cation and anion mobilities normalized by
their sum; and (3) a Péclet number which depends on the charge number and
apparent diffusion coefficient for the salt and the temperature, viscosity and dielectric
constant of the fluid. The leading term u, turns out to be identical with that calculated
in §2, while u, is obtained in closed form as multiple integrals, which are evaluated
analytically for small { and numerically for arbitrary .

Some implications of these results are discussed in §4. Part of the solution for the
diffusiophoretic velocity corresponds to the electrophoretic velocity generated by an
applied electric field (see Appendix B). That part of the solution is compared to
numerical results obtained by O’Brien & White (1978) and an analytical approximation
obtained by O’Brien & Hunter (1981). Finally we show that a Padé approximant can
be used to extend the results to larger A.

2. Infinitesimally thin counterion cloud (A = 0)
2.1. Flow near an infinite flat plane

Consider an interface between a solid with charges affixed to its surface and a binary
electrolyte solution which results from the complete dissociation of a simple symmetric
salt M*2X~Z in a polar solvent. Further suppose that this interface forms a plane
of infinite area and that the solution resting on this plane is infinitely thick. Let C,
and C_ denote the local number density of cations and anions respectively, and let
the subscript co refer to a distant point in the solution which is beyond the influence
of the charged interface. For example, by C, we mean that number density which
C, and C_ approach as y — oo for constant x, where the coordinates x and y are defined
in figure 1.

Even when C is independent of x, as well as y, the charge on the interface gives
rise to a nonuniform distribution of ions. Counterions simultaneously experience
electrostatic attraction, which tends to bring them to the interface, and Brownian
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motion, which tends to distribute them uniformly. If the solution is ideal (i.e. dilute)
the flux of either species is given by the Nernst—Planck equation:

Z.eC,
Ni=—Di[VCi+ ;CTZVI/I:', (2.1)

where ¢ = + and — respectively denote the cation and anion, D, is the diffusion
coefficient of the ion,  is the electrostatic potential field, Z;e is the charge carried
by a single ion, k is Boltzmann’s constant and 7 is the absolute temperature. We shall
assume Z, = —Z_ = Z from here on. At equilibrium, a balance is achieved between
the effects of the electrostatic force and Brownian motion such that N; = 0 for all
x and y, and a Boltzmann distribution of ions arises:

Cy = Cyexp(FP), (2.2)
where @ is the dimensionless electrostatic potential:
Ze(l/f _ l/,oo)
=00 Vol 2.3

A second relationship between the distribution of ions and the electrostatic force
acting on them is provided by Coulomb’s law, which for continua is represented by

Poisson’s equation:
Vi = dnZe(C.—C ) /e, (2.4)

where ¢ is the dielectric constant of the fluid. Substitution of (2.2) into (2.4) yields
the Poisson—Boltzmann equation, which can be integrated (subjecttoy = y aty =0
and ¥ >y, as y—> o) to obtain

tanhi® = ye™Y, (2.5)
_ Zel  ,  8nZP*C
where Y= tanhm, K = —-;I;:T— (26), (27)

and { = ¢, — . This analysis was first reported by Chapman in 1913. Later, Debye
& Hiickel solved the linearized form of the Poisson—Boltzmann equation to determine
the spherically symmetric distribution of ions about any given central ion as an
intermediate step in their theory of thermodynamic activity for strong electrolytes.

The characteristic distance over which @ (and therefore C' and C_) decays to its
asymptotic limit as y— o0 is called the ‘Debye length’ «!, which varies from about
1 pm in distilled deionized water (C,, & 107 M) to about 1 nm in a physiological saline
solution (C, = 0.1 m). The fluid within one or two Debye lengths of a charged
interface contains an excess of oppositely charged ‘counterions’, and hence is not
electrically neutral. This layer of solution forming a counterion cloud, together
with the layer of fixed charges at the interface, is electrically neutral overall and is
collectively called the ‘double layer’.

Suppose that U is not uniform, as was assumed above. In order to have no current
arising from cocurrent diffusion of the counterions and coions in an electrically
neutral solution, we must require that N, = N_ in (2.1), which can only occur if an
electric field arises spontaneously:

D,—D._

kT
Ew=~Vl/fw=EzﬂV1nCw, ﬂ=m
+ —

(2.8a,b)
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This gives rise to a net flux of the electrolyte:

2D, D_
Noo = DVOOO, D—m (29a,b)
Since N = 0, the solution is not strictly at equilibrium; however, the concentration
at nearby points might still be approximately related by Boltzmann’s equation. In
particular, if the Debye length is much less than the distance over which C_ varies
appreciably (more precisely, if [V In C | < «), then ions in the double layer along any
normal to the surface are still nearly in equilibrium, so that

Ci(@,y) = Oy (@) exp [ F D(x, )], (2.10)

D(x,y) W Z,Y) = Yo (%)]- (2.11)

Furthermore, if the tangential component of the electric field is negligible compared
to the normal component (more precisely, if |[E_ | < «|{]), then 02/0z% <€ 9%/0y? in (2.4)
and integration again yields (2.5)—(2.7), where now {(x) = ¥(z,0)— v/, (x)

Fluid elements inside the double layer are charged and experience an electrostatic
body force. Including this force in Stokes’ equation yields

— g VRV +Vp+(C,—C_) Ze Vi = 0. (2.12)

Scaling arguments applied to the continuity equation show V, to be the only
significant velocity component; thus we may immediately deduce the hydrostatic-
pressure profile by integrating the y-component of (2.12) using (2.10) for the ion
distributions:

(X, Y)— Py = 2kTC ()} {cosh [D(z,y)]—1}. (2.13)
Substituting this result into the x-component of (2.12) yields
dzv, d
] i = (C,—C_)Ze ¢w+2kT[cosh¢’-—1]—— (2.14)

Thus the concentration gradient itself, as well as the electric field induced by the
concentration gradient, give rise to an imbalance between the hydrostatic pressure
and electrostatic stress. Fluid elements then accelerate until the resulting viscous
stress brings the forces into balance. Substituting (2.5) in (2.14), then integrating
twice, yields the relative velocity between the distant fluid and the solid:

e dy, +4JcT dC

2(00) = V,(0) =

Of course, the first term is just the result obtained by Helmholtz for the relative
motion induced by a macroscopic electric field. The second term is an additional
contribution which is analogous to motion generated by gradients of non-electrolytes;
the form of this term is mathematically equivalent to an expression reported in a
footnote by Derjaguin et al. (1961). In the absence of an externally applied electric
current, diy, /dx can be deduced from (2.8). After substituting this result together
with «2 from (2.7), (2.15) becomes

kT kT d
Fatoo) = Vul0) = = g o] f—2 o tn (1) |40

T Ze (2.16)

¥LM 148
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2.2. Large particles (A —0) of arbitrary shape

Suppose that the interface portrayed in figure 1 is the surface of a particle of arbitrary
shape whose smallest principal radius of curvature @ at every point on its surface is
infinitely greater than the thickness of the counterion cloud (ka— o0). Let x, be the
position of the centre of the particle, and let » = x—x, be the position in a frame
of reference moving with the particle at its velocity U,.t

Consider a closed surface &} which surrounds the particle and the entire double
layer. Since the region enclosed by this surface is electrically neutral, the net force
exerted on this boundary by the fluid must vanish (see Appendix A). One solution
that satisfies Stokes’ equations and this zero-force condition is potential flow:

V=-V¢, (2.17)
where, outside of '}, ¢(r) satisfies
Vg =0,
n'V¢$ =0 on %}, (2.18)

V¢~>U, (r—>o0).

Of course U, is unknown, so (2.17)—(2.18) are incomplete.

Since the fluid is electrically neutral outside the double layer, we have €, = C_ = C.
If convective transport of ions is neglected, then, outside of &}, continuity of the
ions and (2.9) reduce to

Ve =0,
n'VvC=0 on4%;}, (2.19)
VC->VCO, =ae, (r—->w),

where a = |[VC_|. In principle, (2.19) can be solved for C(r), but this is not necessary.
Note that (2.18) and (2.19) have the same form including the same condition on &},
Now consider the flow within the double layer at the particle surface, which is shown
on the scale of k™! in figure 1. The velocity of the fluid on &} is found by applying
(2.16) with ¥,(0) = 0, or

(/—nn):[V+bVInCl=0 on%f, (2.20)

where —b is the coefficient of dInC /dx in (2.16).

Although C varies from point to point on &, the total variation over the entire
surface is on the order of aL, where L is a characteristic dimension of the particle.
If the undisturbed electrolyte gradient is not too steep, so that al < C(x,), then
VinC in (2.20) can be replaced by [C(x,)] *VC. To find U,, we define a function

Y =¢—[b/C(x,)] C, which must satisfy

VY =0,

—_— +
VY=20 onyb’p, 2.21)
VY- Uo—mae?_ (”'—)@)

+ The subscript 0 is added here to denote the special case in which A = 0.
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This problem is ill-posed and has no solution unless U, takes on that value for which
the second boundary condition is VY -0 as r— c0. Then the trivial solution (VY = 0
for all r) is obtained. The particle velocity that admits this solution is

e kT kT
0=Zn—ﬂz—é[ﬂ§—2zln(l—y2):|VlnCw, (2.22)

where C (x) is the electrolyte concentration field in the absence of the particle. This
result is generally valid for a particle of any shape in the limit that «7! is negligibly
small compared with the smallest principal radius of curvature at all points on the
particle surface. Of course, neglecting convective transport of the electrolyte in (2.19)
also requires UyL/D < 1, where D is the electrolyte diffusion coefficient in (2.9).
Equation (2.22) was previously deduced by a more intuitive method (Derjaguin ef
al. 1961 ; Dukhin & Derjaguin 1974).

Morrison (1970) showed that the flow outside the double layer is also irrotational
for the motion of a charged particle of arbitrary shape in an applied electric field
(electrophoresis), provided that the double layer is everywhere thin compared with
the radius of curvature. The problem of diffusiophoresis is similar to electrophoresis
in this respect. Again, the irrotational nature of the flow outside the double layer is
a consequence of the zero-force constraint discussed in Appendix A and in part 1 of
this series. Consequently, the velocity field far from the moving particle decays as
r~" where n > 1. Thus the particle cannot be represented by a Stokeslet, but rather
is characterized by force dipoles or higher moments. In the case of diffusiophoresis
or electrophoresis with @ — o, the velocity is O(r3) rather than O(r7!) for Stokes flow,
so that hydrodynamic interactions between, say, two particles or one particle and
a neighbouring rigid surface will be much weaker. Because the zero-force constraint
that leads to this behaviour is characteristic of electrophoresis and diffusiophoresis,
we might use the phrase ‘phoretic flows’ to denote the class of problems that impose
this constraint. Not all phoretic flows correspond to potential flow; other velocity
fields can also satisfy the zero-force constraint. For example, potential flow is not the
outer solution for finite k@ or when convective transport of the solute is important.

3. Thin counterion cloud (A < 1)

Although particle size and shape have no effect on diffusiophoretic velocity in the
limit A -0, these geometric factors become important when the Debye length is finite
compared with the particle radius. Two considerations must be addressed. First, the
distribution of ions cannot be assumed to correspond to thermodynamic equilibrium.
Instead one must solve the appropriate convective—diffusion equations inside and
outside the double layer. Secondly, the r-component of the fluid velocity near the
particle surface is no longer negligibly small, but instead exerts an influence on the
distribution of ions within the double layer. As we note below, convection can be
significant (when O(A) contributions are considered) even as Ua/D—0. The notation
of §2 is used in the analysis that follows: in particular, r is the position vector relative
to the centre of the moving sphere. The equations describing the ion distributions
are solved first, and then the particle velocity is computed to O(A). Fortunately, the
coupling between the ion distributions and the fluid velocity occurs at different orders
in A, so that the two sets of equations can still be addressed sequentially.

9-2
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3.1. Ion-concentration fields
The standard convective—diffusion equation with an electrical migration term is used
for each ion:

) 0.
Div-[v0i+%§0iv¢] —vve,+ %%,

o
O, Zie oy 3.1)
o Tar G, =0 =

C,—C (x)=C(xy)+arcosf (r—a0),

where V is the fluid velocity and « is the magnitude of the undisturbed electrolyte
gradient. The condition at » = @ means that no ions can penetrate or accumulate at
the particle surface. As before, we consider only a symmetrically charged electrolyte

with Z = Z, = —Z_. Changes in the electrical potential are determined from Poisson’s
equation:
anZ
Vi = -0, —C),
: (3.2)
pkTo

Y (x) = l/fw(xo)_ZeC x )rcosﬁ (r— 00},

where f is defined by (2.8b). We purposely avoid stating the boundary condition on
Y at r = a because, as demonstrated later in this section, it is sufficient to specify
the zeta potential, { = yr(a)— ¢, (x,), thatexistsatequilibrium (&« = 0). Informulating
the r > oo condition from (2.8), we assume aa <€ C_(x,) so as to replace VInC_, by
[Cp(x,)]72VC,. Note that subscript oo on €' and ¥ now denotes the ‘undisturbed’
field that would exist in the absence of the particle.

If the electrolyte solution is only slightly non-uniform, then the perturbations in
concentration and potential away from equilibrium (which occurs when o« = 0) will be
small. We define the dimensionless perturbations (c}, @' and v') such that

C, = M+ aaci +0(a?), (3.3a)
= Z_e S — OO xa 1 2
@ - k]wuﬁ woo(xo)] - @ + Coo(xo) ¢ +0(a' ), (33b)
V= “k2Tv1+0(a2), (3.3¢)
nK

where « is defined in (2.7). Since (d/dt) C [ x,(t)] = aU and since U is O(a), we conclude
that 0C,/0¢ in (3.1) is O(a?). In what follows, we neglect all O(a?) terms. Besides a
slightly non-uniform concentration field, this requires that Ua/D < 1; using (2.7) and
substituting the coefficient of v! in (3.3¢) for the characteristic speed U, this latter
requirement becomes

aa
———Pe €1, 3.4
EEN B4
o = __° ﬁ’)z

where Pe = 87t77D(Ze . (3.5)

A sample calculation shows that Pe = 0.1 in aqueous solutions; thus (3.4) is also
satisfied if aa < €, (x,). The spatial coordinates are made dimensionless by dividing
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them by a (p = r/a). Substituting (3.3) into (3.1) and (3.2) and collecting terms O(a’)
yields a result that resembles the Boltzmann distribution (2.10):

% =C(x,) exp(— D), C° = (x,) exp(+DP?, (3.6a,b)
1 d 2d¢°:| g s
24 - h @°
2 [p & A 2sinh @°,
3.6¢)
_ Zet (
0 — = — = 1
»=t=72 (=1,
D' >0 (p—c0),

where A = (ka)™! is considered a small parameter. The solution for @° was derived
recently by Chew & Sen (1982) as an expansion in A. In terms of an ‘inner variable’
y=A"Yp—1) and the surface-charge parameter y defined in (2.6), their inner
expansion is

P = §ily) + Ag4(y) + O (y = O(1)), (3.7)
Qye~Y
B = e e = 2] (3.8)

where ¢ is given by (2.5). These results are needed later. It is also important to note
that, as p >0, P* ~ exp[—A"Y(p—1)] for any A.

The O(a) equations, obtained by substituting (3.3) into (3.1) and (3.2), can be
uncoupled and greatly simplified by defining two new variables P and ¢:

P = (cos 8)7! [c} exp (P°)+ D], (3.9a)
@ = (cos )7 [el exp (— D) — D], (3.956)
(3.1) then becomes
d*P [2 do¥|dP 2 v,] do°
e Pl el el e (310
d*Q 2 ,do"1dQ 2 [u}] do°
dp? [5 dp]ﬁﬁ AR ] R
P do (3.10b)

P>(1—=p)p, @->0+p)p (p—>),

Besides uncoupling the ion-transport equations, the definitions (3.9) provide another
important benefit: they avoid the explicit appearance of @' in (3.10) or in the
boundary conditions: furthermore, the driving force for fluid flow in the double layer
(as demonstrated later) is

S = (cos )7 [c}L—cl + (2 cosh @°) P1], (3.11)
from which @! can also be eliminated:
S=Pe®—Qet?. (3.12)

One consequence of eliminating the perturbation in potential is that (to O(x) at least)
we do not have to specify how the surface potential is perturbed by the electrolyte
gradient: the zeta potential { at equilibrium is the only electrostatic property of the
particle which affects its diffusiophoretic velocity. The same conclusion was reached
by O’Brien & White (1978) in their analysis of electrophoresis.
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Our strategy for solving (3.10) is to develop expansions in A for P and @ in both
the inner region (y = A"(p—1) = O(1)) and outer region (p = O(1)), then to match
these expressions appropriately at the boundary of the two regions. To accomplish
this, we borrow results from the analysis of the velocity field below, which shows that

vk = [Aw, ,(y) +0(AD)] cosf (y = O(1)) (3.13)

with w, ,(y) given by (3.24). After following the above strategy, we obtain the
following solution within the inner region:

P= P<.i) = py+Ap, +A%p,+ } (y = O(1)), (3.14)
Q = QW = q,+Aq, + A%, + ...

1-p), p, = —(1—56) [3[00 (e —1)dy+ Pe Lm w,,ldfl;body],

0

1+ oo . o0 de-HP“
g0 =31+4), q1=—(*‘2—ﬂ>[3f (ew—l)d“PeI w'vl‘d_y‘dy]

0 0

Po

Note that PY and Q@ are independent of y and @ through O(A). A subtle feature of
the matching between inner and outer expansions for P and ¢ is that we had to
evaluate the derivative of the O(A?) term of the inner solution (for example dp,/dy)
in the limit ¥ > o0 in order to determine p, and ¢,. The function S is obtained for the
inner region by substituting (3.14) into (3.12):

S = 8,(y)+ 281 (y) +0(A%)  (y = O(1)), (3.15)
8y = — 3[4 cosh ¢ +sinh ¢f],
8, = — 3¢ B sinh ¢3 + cosh ¢J]
slaspen [ @oo—nay—1-pes |

0 0

(e~¢3(y,) —1) dyl:l

Pe ®© de? o de?8 }
i #3 _ —(1— 98 -
D et | ) G = (1= | ) = |

¢ and ¢? are found in (2.5) and (3.8), while w, , is given by (3.24).

3.2. Velocity field

Stokes’ equation is modified to include an electrical body-force term which is non-zero
only within the double layer, or when y = O(1). Using dimensional variables,

VIV —-Vp—Ze(C,—C_)Vy =0, (3.16)
V-V =0, (3.17)
V=0 (r=a),

Vs—-Ue,+0(r ™) (r— o),

where U = Ue, is the particle velocity in a laboratory-fixed reference frame. As
discussed in Appendix A, the net force exerted by the fluid on any closed boundary
outside the double layer must be zero to O(a), which implies that V decays to — U
as O(r~"), where n > 2. By requiring ¥ to decay in this manner, the above equations
can be solved to obtain U.
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After taking the curl of (3.16) and using the dimensionless variables of (3.3) and
(3.11), we have the following O(a) terms:
0

dé° |
P 8in 6, (3.18)

e VAV x 01) = A%18(p)

epl —
vt =0, (3.19)

where u is the dimensionless particle velocity,

u= [";’22 U (3.20)

and S is given in general by (3.12) or in the inner region by (3.15). We solve for !
by considering the inner and outer regions separately and then matching. In the outer
region, the right-hand side of (3.18) is O(A®) because @° ~ exp[ —A"}(p—1)]; thus
an outer field that satisfies (3.18)—(3.19) and the p— 0o condition is

v =—[ut+bp 3 cosbe,+[u—bp®]sinfe, (p=0(1)), (3.21)
u=uy+u, A+0(A%), b=>b,+b,A+0(A%).

The coefficients u, and b, are found by matching this result, expressed in the y-variable,
with the inner solution.

In the inner region we expect a solution of the form

v = w,(y) cosOe, +wyly)sinbe, (y=0(1)), (3.22)
w, = w, oY) +Aw, ,(y)+O0(A?),
W = Wy, o(y) +Aw,, 1(y)+ O(A?),
w,=wy=0 (y=0).

The wy ,, are determined by solving (3.18), one order in A at a time, with w
determined from (3.19). The final equations are

dwr,o - dwr,l _ d3w6 0 __ d¢8
dy = 0, dy - 2w 0 0’ dya - o(y) dy ) (3 23)
Pwpy g8, dgs A5, ()90 '
& = 3T vl gy TG )5

The solution to these equations is obtained by direct integration, with the integration
constants determined from the boundary condition at y = 0 and by matching (3.22)

with (3.21). s,(y) and ¢3,(y) are found in (3.15), (3.8) and (2.5). Note that w, , is needed
to compute s, :

y v, w© © dgg
Wy y = "2‘[ dyl‘[ dyzf dysf $o(¥,) du dy,. (3.24)
0 0 Ye Ya Y

After matching we obtain

Uy = —by = 3f Y2soly °dy, (3.254)
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BT d¢
U = bl 3-’0 Yy 80“/) dy - 9,’ y dy

+%Jwy[ ‘qulo (y)%]dy. (3.25b)

0

dy

In dimensional terms, the corresponding particle velocity is

€

kT ¢
87177( > [#g+u, A]V In C (3.26)

which is correct to O(A).

3.3. Computation of particle velocity

After substituting (3.15) for s, in (3.25a), using @9 given by (2.5), then integrating,
we obtain B
Uy = 2p{—41n(1—v?),

kT kT (3.27)
=— —In(l— InC
0 4717]Ze['8§ 2Z n )]Vn o
where vy is given by (2.6). This result is the same as that derived in §2 using the result
of flat-plate analysis as the ‘slip velocity’. Unfortunately u, cannot in general be
expressed in terms of elementary functiorls of . However, if |{] is restricted to small
values, a regular expansion in powers of { can be performed to give

= =602+ 0(8). (3.28)
Combining this with the 0(/\0) result and neglecting O(£?) terms, we obtain
— 2(] — 21
= 15 (Zo) PR —sn+iea—gavin e, (3.29)

where the error of this expression is O(£%) and O(A%).
We were forced to numerically evaluate u, at larger zeta potentials. A convenient
representation of these results which allows substitution of arbitrary £ and Pe is

uy = K+ fF + PelF+ f(Fy + F) + f°F,), (3.30)

where the formulae for F,({) are determined by comparing (3.30) with (3.25b) and
are given in Appendix B. The asymptotic behaviour of these coefficients as |{ >0

is given by E, =—-224+0@Y, F =-6E+00), (3.31a,b)
Fy ==+ 0. F=-30+0@Q), (3.31¢,d)
F,=—30+0@), F=—220+0@). (3.3Le.f)

Numerical evaluation of these integrals as a function of zeta potential leads to the
values shown in table 2 in Appendix B, which are plotted in figures 2 and 3. Except
for the requirements that it be binary and symmetric (Z, = —Z_ = Z), (3.30) is
generally applicable to any choice of electrolyte. Physical properties are contained
in ¢, # and Pe. Note that F,(—&) = (—1)" F,().

Asa sample calculation, we computed %, and «, versus zeta potential for three aque-
ous solutions at 25 °C: NaCl (8 = —0.195, Pe = 0.16), KC1 (8 = —0.0068, Pe = 0.13)
and NH,F (§=0.147, Pe=0.15).f These results are plotted in figures 4 and

T These values of § and Pe were computed from (2.85) and (3.5) using limiting (C —>0) equivalent
conductances of the separate ions.



Motion of a particle generated by chemical gradients. Part 2 259
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Fieure 2. Odd functions appearing in (3.30). £ is the dimensionless zeta
potential in the absence of the electrolyte gradient.
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Freure 3. Even functions appearing in (3.30).
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Fi1cURE 4. Dimensionless O(A®) contribution to particle velocity (see (3.26)) versus dimensionless
zeta potential for three electrolytes in water at 25 °C.

300

200

—Uy

100

FicurE 5. Dimensionless ((A') contribution to particle velocity (see (3.26)) versus dimensionless
zeta potential for three electrolytes in water at 25 °C.
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5. Because g is so small for KCl, a charged particle of either sign moves toward higher
electrolyte concentration except when  is in a small range of positive numbers, for
which case the direction is toward lower electrolyte concentration. Because — g is
larger for NaCl, a particle would move toward lower electrolyte concentration over
a broader range of positive zeta potentials.

4. Discussion

Diffusiophoresis can be considered a linear combination of two effects: (1)
‘chemiphoresis’ due to non-uniform adsorption of counterions over the surface of the
sphere, and (2) ‘electrophoresis’ due to the macroscopic electric field generated by
the gradient of electrolyte concentration (see (2.8a)):

U= U9+ U®, (4.1)
2
U®© = %(@ZZ(D {—41n (1—y*)+A[F,+ Pe(F,+ BF)]+0(A%)}VInC, (4.20)
e) e kT __ \
= g;t;Z—e{2€+/\[Fl+Pe(ﬂI;+ﬁ},)]+0(A WE,, (4.2b)

where { is the dimensionless zeta potential, A = (ka)~?, and y and f are given by (2.6)
and (2.8b6). In appendix C we show that (4.2b) also applies to electrophoresis through
a macroscopically uniform solution caused by an impressed electric field. The linear
superposition in (4.1) is possible because the governing ion-transport equations were
linearized with respect to the gradient a = |VC|. If O(a?) were included, such
superposition of the two phenomena would not be possible. Moreover (4.1) and (4.2)
apply to solutions in which there are simultaneously an electrolyte concentration
gradient and an applied electric field (i.e. current is passed through the solution).
By considering the limit A -0 and |{] < 1, it is easy to see that chemiphoresis is
analogous to diffusiophoresis of non-electrolytes (Anderson et al. 1982). For adsorption
onto a flat surface, the Gibbs excess concentration of electrolyte at equilibrium is

= %K_1J‘ [C,+C_—2C_1dy = kC L [cosh ¢ —1]dy. (4.3)
0

After substituting ¢ from (2.5), we obtain
I'=2«"1C[coshif—1],

i 17 e €0,
kK = . 2[cosh i 1]_){3%@1 (18> o), (4.4)
where K is the ‘adsorption length’. For A = 0 the chemiphoretic contribution (4.2a)
can be expressed in terms of K:
T
U©) = % In(1+K)VC,. 4.5)

Comparing with the diffusiophoretic velocity for non-electrolytes, given by (4.2) of
Anderson et al. (1982), we conclude
L*K = 4« In(14+ 1k K)—>«'K (K—0).

Thus, for A =0 and [{| < 1, (4.5) for electrolytes takes on the same form as was
previously obtained for non-electrolytes, with the Debye length x~! corresponding
to L* as well as the length L characterizing the decay of ®(y).
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For non-electrolytes, Anderson et al. concluded that curvature could be neglected
if and only if L and K were both much smaller than the particle radius. If this
conclusion is applied to electrolytes using L = «~* and (4.4), then

el < 1 (4.6)
is sufficient to neglect curvature. Of course, when |{] is large, this implies that A has

to be very small indeed, owing to the large value of the adsorption length.
Each term in (4.1) can be expanded separately:

U = UP [1+GDA+0(12)], 4.7a)

where (i) equals (c) or (e). Since U,/U, may be singular, the total velocity given by
(3.26) cannot be expressed in this standard form. Comparing (4.7a) with (4.2) shows
that

o & H>2 Cn(f— o _Fot PelFy+ BFy)

U§ 2m]<Ze [—In(1—y)]VInC,, @ TR (4.7b)
2

U = () ALTInC GO = @) [F,+ Pe(fF,+ F)l. (4.70)

The expression for U{® is equivalent to Smoluchowski’s equation for electrophoresis,
while our expression for U{® agrees with the expression derived by Anderson (1980)
for [f| < 1 and with that presented by Dukhin & Derjaguin (1974) for arbitrary .
In the case of small zeta potential, (4.7) reduces to (3.29), and hence

G© = _gzl+0(€), G© =—-3+0(0). (4.8a,b)

For both chemiphoresis and electrophoresis, curvature retards the speed of the
particle. Note that (4.8b) agrees with the O(A) effect derived by Henry (1931) for
electrophoresis.

When |{] is not small, the coefficients G® can become quite large. To neglect O(A%)
in (4.7) we anticipate that a necessary condition is that |GA| € 1 or that (4.6) is true.
Indeed,if —G©A > 1and g = 0, wepredict migration towardlower salt concentration,
in violation of the second law of thermodynamics. The range of applicability might
be expanded by replacing (4.7) with a low-order Padé approximant in which the O(A?)
. term is dropped: U® = UD [1 - GOAL. 4.9)
This form avoids sign reversal as A is increased because the term in brackets is always
positive. As shown in table 1, the Padé form for U® gives quite good agreement with
the ‘exact’ (numerical) values of O’Brien & White (1978) for electrophoretic mobility.
Although we have no exact values of U® with which to compare (4.9), we expect
good agreement here as well.

A sample calculation illustrates that diffusiophoresis can be an important transport
mechanism in boundary layers. Consider a 0.1 pm radius particle having { = —2 in
aqueous NaCl solution having a concentration of 0.1 moldm™ (M) at 25°C
(A = 1072). Let [VC_] = 1.0 M cm™!. From (4.7) and table 2 (Appendix B) we have

U = 0.248 pm/s, G =—13.7,

U@ = 0.401 pm/s, G© =—5.32.
Substituting these values into (4.9) with A = 9.6 x 1072 gives
U® =0.219 pum/s, U® =0.381 um/s.

The diffusive (Brownian-motion) velocity of the particle is D/I, which equals
0.025 pm/s for =100 pm (a typical boundary-layer thickness). This example
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FIGURE 6. A map showing the direction of net migration for xa = co.

indicates that diffusiophoresis dominates Brownian diffusion and hence would
significantly enhance the rate at which particles are transported through the
boundary layer. Diffusiophoresis has been used commercially for large-scale coating
of metallic surfaces by latex paint (Smith & Prieve 1982).

In the example above, both electrophoresis and chemiphoresis act to move the
particle in the direction of higher salt concentration. Generally speaking, chemi-
phoresis always acts in this direction, while electrophoresis either acts in concert with
chemiphoresis or in competition, depending on the sign of L.

A map showing the direction of net migration is provided in figure 6. Inside the
first and third quadrants, chemiphoresis and electrophoresis act in concert to produce
migration toward higher salt concentration, while in the second and fourth quadrants
the two compete. When competition occurs, a change in the absolute magnitude of
¢ can cause a reversal in the direction of migration although the sign of { remains
the same. This reversal in direction might have some interesting consequences for
separating mixtures of similar particles. For example, in a gradient of NaCl, particles
having £ = 1 move toward lower concentration, while particles with { = 2 move in
the opposite direction.

This map of directions is for very large particles. For particles of moderate size,
the direction of migration also depends on the size. Since a reduction in the radius
of curvature tends to retard chemiphoresis more than electrophoresis, the region of
the second and fourth quadrants in which electrophoresis wins the competition grows
as ka decreases. Let {*(8, Pe, A) denote the non-trivial value of { for which the two
opposing contributions exactly cancel each other to produce U = 0. For small zeta
potentials one can use (4.7) and (4.8) to deduce that

f*=—8[1+8A+0AY]8 (I <1). (4.10)
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¢ oW+ (4.12a) DUK+ OH{
0.3980 0.0310 0.0298 0.0008 0.0052
0.8036 0.0329 0.0320 0.0034 0.0021
1.2267 0.0369 0.0361 0.0080 0.0109
1.6676 0.0432 0.0426 0.0153 0.0220
2.1712 0.0528 0.0528 0.0267 0.0366
2.7340 0.0685 0.0692 0.0445 0.0571
3.4096 0.0940 0.0971 0.0741 0.0885
4.2927 0.1433 0.1502 0.1287 0.1430
5.6640 0.2579 0.2765 0.2519 0.2610
10.000 0.7095 0.7966 0.7143 0.7078

+ Numerical values for results of OW, OH and DUK were obtained from tables in O’Brien &
Hunter (1981).

TaBLE 1. Comparison of various analytical approximations for EM* at A = 0.01
with the numerical results of O’Brien & White (1978)

Thus &* = {*(B, Pe, 0) is the equation of the curve in figure 6. Since the value of zeta
potential at which a reversal occurs depends on A, particles of different size but the
same zeta potential might migrate in opposite directions.

As a final point of discussion, we remark on the differences between our analysis
of the polarized double layer and that of O’Brien & Hunter (1981, hereinafter referred
to as OH) which is closely related to the method of Dukhin and coworkers (Dukhin
& Derjaguin 1974). OH define the perturbation in double-layer structure by
parameters @, and @, (see their equation (2.1)), which are related to our perturbation
variables when O(a?) terms are neglected: their @, is our — P cos 8, their @, is our
+ @ cos 8, and their equation (3.4) is equivalent to our (3.9). The essential difference
is that terms O(A) are neglected in their mathematical solution, but terms O(A e¥)
retained; hence the validity of their result is restricted to A—0 but e¥ sufficiently
large that Ae¥ is finite (O’Brien 1983).

Althoughtheresult of OH showsexcellent agreement with the numerical calculations
of electrophoretic mobility by O’Brien & White (1978, hereinafter referred to as OW)
when A < 0.02 and ¢ > 5, the OH analysis breaks down at smaller {. Table 1 lists
the normalized curvature correction EM* as a function of ¢ for a hypothetical
electrolyte (= KCl) having # =0, Pe =0.138 and Z = 1:

_EM-§ EM - 6nyZe U®

EM*= 2= = .
i T E_° (.11
where K, is the applied electric field. From (4.9) and (2.8a) we have
—G©)
EM* = m, (412&)
3A =
*{Fa (I¢ < 1), (4.12b)

where G® is computed from (4.7¢). At { < 1 we notice that the OH prediction departs
significantly from OW, as should be expected since OH did not consistently match
inner and outer solutions to O(A). Our result, while not as good as the OH result when
¢ is very large, is quite accurate for the entire range of A < 0.1 and |{| < 5, and is
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asymptotically correct as A—0 at any {. Note that (4.12q) predicts a maximum in
EM versus ¢ for any given A, as confirmed by the calculations of OW.

In summary, we have analysed the movement of a charged sphere through a
solution having a gradient of concentration of a simple electrolyte. Our perturbation
analysis leads to results correct to O(A), as presented in (3.26), (3.27) and (3.30). The
required functions F,(£) have been computed from the formulas in Appendix B, and
the results are numerically displayed there in table 2. To extend the accuracy of the
O(A) analysis to larger values of A, one may use the Padé approximant (4.9) with the
expressions in (4.7). Applying this scheme to the electrophoretic component U'®
and comparing the predictions with the calculations of O’Brien & White (1978) for
electrophoretic mobility in table 1, we find reasonable agreement for A < 0.1 and
¢ < 10, and excellent agreement for { < 5. Given the physical properties = Zel/kT,
A = (ka)™', f and Pe (see (2.8b) and (3.5) respectively), (4.1), (4.7) and (4.9) can be
used to compute particle velocity in an electrolyte gradient with or without an
impressed electric current. The major assumption in our analysis is that the
electrolyte concentration field is only slightly nonuniform so that the response of the
particle is linear in the driving forces; also we have not accounted for asymmetric
electrolytes (Z, + — Z_), weak electrolytes or non-ideal solution behaviour.

This work was supported by a grant from the National Science Foundation and a
Fellowship (to J.L.A.) from the John Simon Guggenheim Memorial Foundation.

Appendix A. Velocity far from a charged particle

Consider a surface % enclosing the particle and surrounding fluid such that p > 1
at all points on &, and let n be the outwardly pointing normal. At steady conditions
the total force on the body enclosed by % must be zero:

'[ n(t+7,]dS=0. (A1)
&

<, is the Newtonian stress tensor, while =, is the Maxwell stress tensor accounting
for electrical body forces acting on the body (Woodson & Melcher 1968):

€

€
Te = REE—'S7r

B, (A2)
where E'is the electric field, which is given in terms of the variables in (3.3 b) as follows:
kT 0 aa L . ]
=—— — . A
E ZeV[<P +000(x0)<15 +0(a?) (A 3)

Since @° ~ exp(—A1p)>0and VP~ as p-> 0,

1> 0(a?) as p—o0. (A 4)
From (A 1) we have

lim | n %, dS = O(a?), (A 5)

pr0 JSF

and hence the net fluid (viscous) stress on & is zero to O(a).
Far outside the double layer (90— 1 > A) the axisymmetric flow field is governed
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by the homogeneous Stokes equations, whose stream function has the following
general form:

Y(p,0)= 3 [A,p"+B,p " +C, p~"*] 1, (cos), (A 6)
n=2

where the I, are Gegenbauer functions of the first kind, and 4, equals {U while 4,, =
for n = 3. Using (A 6) one has (Happel & Brenner 1973)

f nowdS=2"yBe, (AT)
& a

Comparing (A 5) with (A 7), we have B, = O(a?), so that to O(x) the far-field velocity
must decay to — U as p™®, where n > 2.

Appendix B. Evaluation of F,(¢{) in (3.30)

The six coefficients in (3.30) were determined to be the following:

0
F@) = 3 | [ sinh g S~y sin gt v 1, 2, B 1)
0
W 0 (4
R = %f [y cosh g3 ¢ ¢° —3r coh e, ey, B2
i (]
d 0
3J 2fn ¢ (n=2,...,5), (B 3)
where
foly) = —3¢% cosh ¢ + [e¢° f (e#5W — 1) dy, —e % f (e~ W) —1) dyl} (B 4a)
0 0
= —3¢? cosh ¢+ 6[sinh (}§) cosh ¢§ + cosh (3€) sinh ¢J—sinh ¢J], (B 4b)
fily) = —3¢? sinh ¢ + [e‘f’” f (e#W0 —1)dy, + e“”‘gJ (e~ —1) dyl] (B5a)
0 0
= —3¢° sinh ¢+ 6[sinh (1) sinh @3+ cosh ({) cosh ¢3— cosh @3], (B 5b)
0 de¢° 0 o0 de‘¢g
huo =3[o#t [t o= | 1) S | (B 60)
dy, 0 dy,
= —ef L I,(y,) e*8¥V sinh [3¢3(y,)] dy, — e 78 L Iy(y,) e~ sinh [3d(y,)] dy,
(B 6b)
| N de? 4 de #
5 = 5o | L) oo | 00 S| (B70)
[e o]
= —eh L Iy(y,) e%@2 sinh [369(y,)] dy, + 6"¢3J Iy(y,) 6% sinh [3¢3(y,)] dy,
0
(B 7b)
1 ® de?’ x de %8
= | e®8 - ~3 b
Jaly) 2[9 L L(y,) dy, dy, +e L I(y,) dy, dy1:| (B 8a)

a [o o]
=—e% L L(y,) %8 ginh (3¢o(y,)1dy, + e % J I,(yy) e~ #¥) ginh Boo(y,)]1dy,,
o
(B 8b)
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1 4 (™ d e o [® de %
( =—|:e¢°f L (y,)——d —e_'f’oj 1 ——d ] B 9a
s 2 \ 1 dy, Y1 , 1) dy, Y1 ( )

A o
=—e"’3L I,(y,) e?®v sinh[%¢8(y1)]dy1—e’¢3f I,(y,) e~ %%V sinh [1¢3(y,)] dy,,
0

(B 9b)

Y Y 2e] o
Iy(y) = GJ dylj dyzj dyaj sinh (¢3(y,)) d¢ﬂ dy, (B 104a)

0 0 Y2 ¥s

Y
= 12[y ln(l—‘yz)—f ln(l—‘yze_zyl)dyl}, (B 10b)
—6J dylj dyzj dyaj cosh (¢4(y,)) d dy4 (B 11a)
Y Ys Ya
=—24 [y tanh™! ‘y+J tanh™! (y e %) dyl] . (B 11b)
0

The second equation of each pair above was obtained by substituting (2.5) for ¢§(y)
and (3.8) for ¢J(y). Numerical values of the six coefficients are tabulated in table 2
for some positive values of . Corresponding values of the coefficients for negative
¢ can be deduced from

= =(—1)"F, () (n=0,1,...,5). (B 12)

Appendix C. Electrophoresis of a rigid sphere

In electrophoresis the particle movement is driven by an applied electric field
(E, = E_e,), and the undisturbed electrolyte concentration is constant (C.).
Equations (3.1) and (3.2) still apply, except that the far-field boundary condition is

altered: C,~C_—C,, }
> (x,) —E, rcost

The following replace (3.3):

(r—00). (C1)

C; = C pal el +O(u?),

B = D+ pa® + 0(u2),

uC kT
K2

(C2)

V ="'+ 0(u?),
where u = (Ze/kT) E . Substituting (C 2) into (3.1) and (3.2) and collecting O(u°)
terms yields (3.6), while the O(u') terms give (3.10) with the following far-field
boundary conditions:

Po>—p, @—>+p (p—>0).

The solution for P and @ to O(A) in the inner region is

3

Po=—% =41
3 (e . @ de %
p1=§j (e‘¢°—1)dy—%(1—,3)PeJ wm—ay—d% (C3)

0 0

R © def
= 3| (et —1 = d
q; 2L {e 1)dy 2(1+ﬂ)PeL (I dy Y,
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where w, , is given by (3.24). After substituting (C 3) into (3.12) and expanding
according to (3.15), we have

8o =—3coshdy s, = fi(y)+pBPef,(y)+ Pefi(y), (C4)

where the f,, are found in Appendix B. Using this result in (3.25) gives, in dimensional
form, the electrophoretic velocity:

e kT
= %Z(u0+/\ul)Ew, (C5)
uy = 28, wu, = F,+ Pe(BF,+ F,), (C 6)

which is asymptotically correct to O(A). Note that the O(A®) result is Smoluchowski’s
expression.
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